
595 West Hartsdale Ave.
White Plains, NY 10607
(914) 761-1100

fEB 201992
For immediate releasDRIG'NJ\L

Fedefal CommunicationS Commiss~ ant act: Car 0 1 Kin g fiLE/
SMPTE Approves Task Force Rep~~~o~~~ers/Descriptors ~~~;f
white Plains, \.Y., Februarv 7, 1992 -- Ibe Report of the Task
Force on Headers/Descriptors was approved Ilnanimouslv at the full
meeting of the SMPTE Standards Committee meeting held on Feb. 6.
1992 in San Francisco. The Committee expressed its appreciation
to the Chairman of the Task Force. Dr. Will Stackhouse. Jet
Prooulsion Labora~ories, dnd to tne Vice-Chairman, David Staelin,
"Iassachusetts Institute of Technologv. for their leadersnip in
completing the comolex report in the remarkablv short time of
seven months and to the members of the Task Force for their
expertise, insight, and close collaboration in the preparation of
its valuable contents.

EX PARTE OR LATE FilED

The report, in essence a feasibility study of possible methods to
implement a header/descriptor mechanism, has been referred to the
SMPTE Committee on Television Production Technolo~y for further
action, including the necessary work leading to detailed SMPTE
documentation of the format, construction, and usage of the
header and descriptor for the interchange of image, sound, and
related data between systems. It is anticipated that the high
level of collaboration that has existed between the
representatives of various industrv segments will continue into
this work and lead to a rapid convergence of views concerning the
contents of the documents.

In essence, the proposed header is a digital label, identifving
the encoding standard and the size of the data block contained in
the associated envelope. It mav also indicate the presence of a
readable descriptor. The header is the enabling mechanism for the
flexible exchanQ"€ of nicture. sound. or other data between
diverse svstems, providin2 the necessarv unambi2uouS information
tor the identification of the associated data. The desi~n of the
header must consider the following attributes:

Universal. All relevant data blocks must be labeled and
identified to enable unambi~uous interpretation.

Interoperable. The header enables the sharing of data streams
across diverse applications, equipments and environments.

Extensible. Service enhancements and technical innovations can be
accommodated without obsolescence.

Cost Effective. A range of equipment having differing
cost/performance characteristics can be accommodated within a
svstem.

(more)

No. of Copies rec'd__---+<9...,.~
UstABCDE

~--

Economic. The header occupies a very small percenta~e of the data
stream (several orders of ma~nitude less than simple sync in
NTSC) .

Efficient. The header data can be rapidly acquired after chan~es

in source or content of data streams, thus allowing editing,
switching and transmission of differin~ formats in a system.

The descriptor is a block of data that enhances the utility of
the main data for the user. It may contain, in standardized
format, data concerning production, ownership, access, previous
processing, or other information additional to the basic
interpretation of the data. In simple processes, the descriptor
may be skipped.

The header/descriptor is the key to the efficient and flexible
-use of the digital data stream for the communication, stora~e or
display of digitally-expressed pictures, sound, text or other
items and makes possible scalable, extensible systems. It serves
to identify the specific attributes of a data service between
processes and thus enables the interoperability of systems usin~

differing, but predetermined, standards.

The SMPTE is now undertakin~ the documentation of the standard
for a header/descriptor that will apply to television, multi
media, image transfer, and a wide range of other related
applications. It anticipates a close liaison with other groups
inv~lved in, or affected by, this work and is actively seeking
their participation to ensure standards having the widest use and
maximum economy of application. The work represents a major and
practical step towards the goal of fully flexible, interoperable,
scalable, and extensible systems that so many are seeking.
Television, HDTV, HRI, graphics, and image communications will at
last be able to overcome many of the barriers to the free flow of
material.

The completion of the preliminary work on Headers/Descriptors,
enables the Task Force on Digital Image Architecture, chaired by
David Trzcinski, PictureTel, to proceed rapidly with its assigned
work, building on this base, and it is expected to complete its
Final Report durin~ the middle of 1992. Standards derived from
this work by SMPTE, or by other organizations, will notably
facilitate the flow of images between systems, especially across
differing applications or industries.

-30-

.......--

..~1 ., .

Society of Motion Picture and Television Engineers®
595 WEST HARTSDALE AVENUE. WHITE PLAINS. NY 10607-1824

TELEPHONE: (914) 761-1\(X) / TELEX: 4995348/ FAX: (914) 761-3115

,

This Report of the SMPTE Task Force on Headers/Descriptors is
an approved document of the SMPTE Standards committee and is
.ade available for information, as it contains valuable
proposals concerning the developaent of digital imaging and
video syste.s and for standardization of certain of their
aspects, that will be of interest generally.

The standardization aspects of the Report will be further
considered under the normal processes of the SMPTE for the
creation and approval of Engineering Documents, which includes
the opportunity for further comment and for pUblic review
prior to their final acceptance. Persons wishing to actively
participate in the develop.ent of these standards, including
attendance at Working Groups meetings and ballot response, may
contact the Engineering Department of the SMPTE at the above
address.

It should be noted that Engineering Documents arising from the
contents of this Report may differ significantly from its
recommendations and caution is suggested in the use of this
report as the basis of design or of implementation.

••
1

-1;

., .

SIIPIB
HltADERjDB8CIUPI'OR TASK FORCE

I'INAL ItI:PORT

Janauy 3. 1982

1.0 INTRODUCTION

The Task Force on Header/Deserlptors has considered the questions posed
in its SCope of Committee Work. and makes the following final report and
recommendations to the Standards Committee.

The report begins With a discussion of the general objectives of the
header/descriptor. and then presents more spedflc objectives selected by the
Task Force as it developed two alternative Implementations.

Both of the proposed implementations could support new SMPI'E
standards. and are described in some detail here. The "ASN.l Implementation"
18 structured using only Abstract Syntax Notation I (ASN.I). an exlsting and
evolving ISO/CCnT standard pJ1ndpaDy u8ed in the computer industry. The
"Compact Implementation" 18 des1gDed to mJnlmlze the number of bits allocated
to the header/ descrtptor function. but also permits optional use of the ASN.l
notation later in the header/desCriptor for further extensibl1lty. Both
implementations perfonn essentially identical functions.

Appendices A and B present illustrative approaches to the deSign of
transport headers and header-decoding software. respectively. Transport
headers are designed to address certain dlfBcult data transport problems.
Appendix: C Usts the official task force members as ofJanuazy 3. 1992.

In view of 1) the great Importance to industry and its customers of the
capabiUties provided by the header/desCJ;iptors described below. and 2) the
degree to which these two possible implementations satisfy the objectives
established at the outset for header/descriptors. the Task Force recommends
that:

The Standards Committee arrange for the preparation of one or
two new standards for digital beader/ descriptors based on
either the "Compact" or the "ASN.l" Implementations described
below. or on a combination thereof.

2.0 GENERAL OBJECTIVES

The header/descriptor task force was directed to consider
header/deSCriptor architectures and Implementations appropriate for the

....L--

emergtng digital high-definition televtslon (HD1V) and hlgh-resolution system
(HRS) industries. The primary design objecttves of the task force are:

• Unlveru1lty - Alllmage and other data streams should be labeled
so that stgnals can be shared aeross systems and applications
with mlnJma1 degradation or confusion: the header/descriptor
should therefore uniquely identlly the encoding scheme employed
and how the data is to be interpreted.

• Longevity -- The header/ descrtptor should provide a number of
potential identtftcaUon codes adequate to serve for decades. and
preferably centuries: this implies that spec1ftc encoding idenUfters.
once aSSigned and registered. should not be reassigned or
redeftned. The header/descriptor should also facilitate longevity
for equipment and media ofall types.

• ExtensibiUty -- To fac1lltate servtce enhancement and innovation.
and to promote longevity of both equipment and recorded signals.
the header/descriptor should accommodate technological
advances in either equipment or recorded Signals with minimal
risk of obsoleting existing components. infrastructure. and media
collections.

• Interoperabllity -- The header should permit optimal sharing of
data streams across data-generatlon. carrier. and equipment
technologies and services in a varlety of error environments. and
should permit all equipment and applications to successfully
ignore encrypted or otherwise delfberately inaccessible data.

• Cost/Performance Effectiveness -- The header/descriptor should
permit use of both low-cost equipment as well as more expensive
hlgh-perfonnance equipment: the header/descriptor should also
accommodate inexpensive equipment incapable of decoding all
possible data streams. Economy and sunpUcity through flexibility
and scalability of the key perfonnance parameters should also be
supportable.

• Compactness -- The header/descriptor should be economic in its
utilization of bits. and should typically comprise a negligible
fraction of the underlylng data stream.

• Rapid Capture -- Much video and other serial data Is intercepted
mid-stream. such as when users switch to a new channel. and
therefore the header/descriptor should permit rapid header
identillcaUon. adequate to meet the needs of all applications.

• EditabiUty -- Common editing and parsing operations. such as
splicing. appending. replacing. insertJng. cropping. and overlays.
should be supportable by the header/desCriptor architecture
without necessarily requiring decoding and encoding of the data
stream itself.

- 2 -

,&

':, ,.

.' .

9.0 sncmc IlBADBR/DBtlCidPI'OIt O&JBCTlVBS

To meet the general object1ves summartzed above. the Task Force selected
the following compact set of speclflc objectives wblch are met by both
Implementations described later. The header and descnptor are defined here
separately.

a.l SpcdDc Hgdcr QblecUvrs

The speclftc obJecUves of the header are to:

• IdenW'y by number the encoding standard employed by the
attached block ofdata.

• Specify the length of that block of data. so that equipment of any
epoch can successfully skip uninteresting blocks of data or data
encoded uamg standards deJlned subsequently.

• indicate whether a readable descriptor follows the header.

• Permit users to intercept data streams at random times. as when
switching channels. so that proper data interpretation begins
swiftly.

• Provide optional error·protectlon capabll1ty. Data generation
entitles may wish to supplement error-protection services provided
in subsequent environments expel1enced by that data. particularly
when those environments are unknown.

The task force considers these attributes of the header to be the minimum
mandatory set. recognizing that additional important capabilities can be
provided by the descl1ptor.

ExamPIes of Hrader Use

A simple example illustrates how these mlnimal capabilities for the header
satisfy the general objectives discussed above. Suppose. after many years.
some HD1V broadcasters wish to provide dual-language sound tracks. This
capability could be provided by adding to the data stream blocks of data
conveying the second language. These new blocks would be labeled by a header
incorporating a standard number not recognized by equipment produced
earlier. This older equipment would read the header and recognize the
standard Identiflcatton number as being unknown. It could then observe the
length of the assoc1ated block. and skip over It to the next header.

All data could be labeled by such flexible headers. or only a designated
portion (e.g. "audtary data") of a more.rJtkUy deftDed IarJer video data stream.
Note that HD1V recetvers capable of receI¥1ng only 20 Mblta per second could
not accommodate Increases except at the expense of any spare capacity
previously reserved for expansion. or by the broadcaster redUcing the number
of bits conveying video or audio: in the latter case the original standard would

- 3 .

-1.--

1
!

have to be deftned 80 as to permit recdvenI to accommodate any such real-time
video or audio truncation, however.

M ~ I)cw;r1ptor ObJectiyes

The prlnclpal function of the descriptor Is to convey additional Information
that Improves the usefulness of the data to the user; its format would be
specified independently of the standard employed for the data itself. Such
optional auxUfary information in the descriptor might include transport
Information such as cryptographic, priority, or additional error-protection
information. as well .. source time, aut:hcJnb1p, ownersb1p. restrictions on use,
royalty payment Information. explicit deael1ption of encoding or decoding
processes. intermediate processing performed. and other Information in forms
that could evol\Ie aver the years. To stmpIIty the decoding task. the descriptor
may also contain an abbreviated "table of contents" and a flag indicating
whether any information has changed since the prevtous descriptor. The
beglnning of the descriptor would also indicate the descrtptor length so that it
might be skipped without interpretation 1£ the user chooses. Optional
additional error protection would be available (or data originators so desiring it.

Specifically. the descriptor could include:

• A list of standard-identiftcation numbers. parameters of operation.
text, and algorithms, in any desired combination.

• A compact optional table of contents for the descriptor.

• A flag indicating whether changes occurred since the previous
descrtptor.

• The length ofthe descrtptor so that it might be readily skipped if
desired.

• Information indicating the number of descrtptor entries and their
formats so that they might be properly interpreted.

• Optional error protection for the descrtptor.

The presence or absence of a descriptor could be indicated by one of the bits
contained in the header.

M ExamJ)les ofDescriptor Use

The use of standard identlftcatlon numbers in the descriptor pennits very
compact and flexible encoding. For example. one such number might be
allocated internationally to each model number of studio television camera. so
that subsequent image processing can maximally improve image quality.
compensating for any camera ldiosyncraales. SImUar ldenUfters could be used .
for different forms of physical. analog, or digital mter1ng that has been applied -.J
to the image subsequently. so that user equipment might again appropriately

-4-

".:.. '

.&

:'~'~;::t~~"
:>:-:>.

: ,~:~ i: (' ,. ,

"'...../

remtel' the 1JDa&e in an opUJDllm way~ on the uaer's intentions. 1b1s
Is Important beeaUlie perfOl'lD8DCe for any parUcuJar display devtce or audio
system Is best when that process1ng ret1ecta the processing that has occurred
preY1Ously.

Authorabtp. owaersblp. and otber 8ucb Information could be conveyed. by
compact staDdanl-tc:Iadi8cation numben. or by U8e of p1a1n text 10 EnglIsh or
some other lane... CertaIn deecrtpton IIIIflIat stmply be numbers lndleating
the setttnes of certaintcbes at the UIDe tile were generated. such as
switches controUfng audio base. treble. or volume. 'nle descriptor may also
Include subrouu.ne. or other encoded Instructions that facilitate subsequent
processJng or decod1ng.

Standarc1a numbers and parameter 8elda can also be used to support
transport-layer functions. Inc1udln& ealmttalJy all forms of cryptography.
statement of the nlattve priority of the cunent data block. priority "btc1d1ng"
data (so users can bid for priority In a free-market sense). synchronization
reinforcement b1ocka. and other lnf'ormatlGo. the character of which can be
deftned over the yeIU1I as new st:anc:larat-JcIentUlcatlon numbers are assJgned
and as new and protocols are deftned.. Tbe incOrpOration of transport
capabilities In thai atandard should not compromlSe those established by other
layers. but wou1cl merely supplement them. 'l11e only llmltatlon is that such
descriptor transport standards should remain robust if block sequences are
shufiled in another transport layer.

4.0 ILUJ8TRATIVE BXAIIPLB8 OJ" IlBADER/DItSCRIPTOR USE

An HD'1V broadcaster could simply dMde the HD'1V signal into blocks.
each begI.DntDg with a header ofperba~8-16 bytes' length. This header would
contain the length of each block. wb1ch could be 8xed for all UDle or variable.
and a unique standards number indlcaUDg the gtven HD1V encoding protocol.
wblch may also be unchanging in the initial years. Ifthe over-the-alr broadcast
standard Is heavily error protected. little additional error protection might be
added to the header. Good engineering practice would suggest. however. that
the header be Independently error protected using some of the options
descrtbed later. and that separate. aDd po88IIbly less robust. error proteeuon be
applied to the remainder of the data stream.

If the HD1V channel is deftned 80 .. to perform all transport functions.
including aD eyncbronJaUon and error earreetIon. then the header/descriptor
described here mfI&bt be imbedded in the tran&ported data stream. At that level
It would preferably be used to encapsulate all data. but could be used in an
Inferior implementation to encapsulate and characterize only 8ubstream or
side-channel data. In this example toe. tile deecrlptor might convey the orlg1ns
and procell"'C~ oCthe data. enabUItC future blgher-perfonnance systems
to employ poet-mtera optlmtzlng the quallty of the output images. Such
ftexibll1ty could be part1cularly Important It the output dtsplay capabll1t1es of the
equipment enabled ftexibll1ty In frame rate. ptxel interpolation routines. and
chrom1nance manipulation. In the case of audio signals. descriptors could be
used in a slmf.1ar manner to enable optimum reproduction by charactertzing
microphone placement and preprocessing.

-5-

......--

A var1et¥ ofheader/descrtptors plua ...Ddated data could be sequenced in
any side channel to proftde a variety of IIeIdbIe ddtVered producta. such as
multiple audlo cbanneIa. multiple-1anguaIe capUODfng. home-shopping order
information. and even entire 'IV stgnaJs encoded at lower qual1t¥ 80 that more
than one can ab8re a smgle channel. In this example. the ultimate tlex:lbWt¥
that could be obtatned with tndtvldual broadca8t cbanneIa would be heavtly
dependent upon the fteJdbJJ1ty fnherent In the broadcaster's abfllt¥ to decrease
the data rate asaociIlted With the tnltlal broacIeast product to accommodate
possible wowth in use of the side-channel capabfllty.

It is also possible to send descrtptor tnlormatlon In a separate block with
its own header. rather than imbeddlng it In the same blocks as the aasodated
data. In this case the characterization o(a atgna1 provided by a descriptor
could remain unchanged (or many blocb unUl that descriptor information
changes. In the evmt the transport layer • prone to shuftling the sequence of
blocks. 1mpall1ng usodation of descrtpton and use of this data. the inherent
tlexlbflfty of thJs header/descriptor system pennlts incorporation of sequence
numbers in blocks so that the recetvtng entity can properly sequence them.
Such separation of descriptor infotmation into separate blocks also sfmplftles
translation between environments bavtnC dlft"erent transport layer protocols:
any descrtptor elements providing transport-layer functionallty can be added or
deleted when mOVIng between such enwtronments. as desired. An option
whereby special "transport header/descriptors" are prepended to blocks is
described in Section 5.7.

To the extent that transport-layer functionality might be imbedded within
the basic data block. it could be harmle.ly overlaid by 8fmllar transport-layer
functionalit¥ in other system elements without loss. Thus the great flexibility
inherent in the header/descriptor architecture proposed here. including its
abflfty to perform multiple functions in a multi-layer ISO environment, should
not be a handicap. and may in some applications be an important advantage.

Furthermore. this header/descriptor structure pennits efficient utilization
of the standards act1vlties of a wide vanety of national and international
organiZations. Every standard developed by such bodies for characterizing or
communicating dlgttal information can be characterized by an idenUftcation
code wblch can be conveyed in an etBdent manner by the header/descriptor
system described here. Since the implementations proposed here call for each
standards authOrity to have its own idenUftcation number. such standards
bodies could. in this "10" concept. chooee to use the very same idenUftcation
numbers they have previously chosen for other purposes. Alternatively. that
authOrity could choose some other simple one-to-one mapping between
numbers. At the same time. such standards can also use this
header/descrtptor system as an Imbedded COIWtruct within their own protocols.
Although the CuD power of the ftexible elltentllble structure proposed here will
only become apparent as It 18 developed and Improved over the years. the basic
architecture can be ftxed immediately. 'ftda"WOUld permit immediate fabrlcation
and utWzation of equipment based upon this standard.

- 6 -

.' .

5.0 COIIPACT IlUDER/DBSCIUP'I'OR APPROACH

The header Ia divided into two puta: a two-byte "header key". and the
remainder. or "header tail". Among the avaJJab1e header options are those
without talIs. COl'nl8ponding to a two-byte header conveying simple messages;
thirty-two~...... of tbIa tJpe .-e ble for future deftn1tion. The
most usual function of the key. however merely to "unlock" the tail by
providing information about the format of that tail.

The deecrtptor .. divided Into three parts: a two-byte "descriptor key"
(stmtlar to the header key), a "core" of 0-8 bytes. and the "descriptor tail". which
conveys a serieS of numbers slgnlfying vartous pieces of information.

5.2. Header KeY

5.2.1 Header Key Organization

The header key consists of two four-bit 1le1ds and one eight-bit field. The
eight-bit field pI'OYidea two-bit error correction capabl1lty for the key, and the
first four-bit length-type "LT' field detenmnes the length of the header Reld in
the tall which contsms the length of the block. A block of data is deflned as
comprising the header. any descriptors. and the associated data. The other
four-bit "ID" fteld normally determines the number ofbits in the header-tall fteld
devoted to indScatInC the standard DUmber under wb1ch the remainder of the
data in the block. poaalbly includlog the descriptor. is encoded. Most
deserlPtol'8 would be pubUcly readable. however. 1be m fleld also indlcates
whether a readable de8cr1ptor foIIowa the header: sometimes one mtgbt Wish to
read the deacrl.ptoI' before dec1d1ng wbetber to decode the rest of the data block.
The m field can altematlve1y convey mea... lor certain lour-bit combinations
in the ftrst four-blt "LT' fleld. In addition to apedfy1ng the length of the header
taU field devoted to spec1fylng block length. the LT fleld also determines what
level of error protection is being prOvided lor the header.

5.2.2 Header Key: Four-Bit "Length-1Jpe" LT Field

The primary purpose of the 4-blt LT field is to specify the length of the field
in the header tall devoted to spec1fylng the block length. For six of the sixteen
possible combinations proposed here (the "flxed-Iength" options) the total length
of the block is pre-speclfted so that no bits in the header tail are allocated to
specllytng block length. The other ten prop08ed combinations permit use of
one, two. lour. and six bytes for spedlytng the block length in bytes In Integer
format; in each cue versions with and without error protection capabl1lty for
the header are avatIable to the standards deflnltion community. The eight-bit
protection provided to the header key Is always present. however. stnce the
integrity of the key Is crudal. and it represents such a small part of the total.

The six proposed fixed-length options are as follows:

1. The block is two bytes long and the message is conveyed by the

-7-

-1.--

four-bit ID field: atxteen messages are rx-lbIe, One of tbeee messages could
signify that the rest of the header/deecrtptor is coded In ASN.l (dual compact
and ASN.l-header decoding capabll1ty would be necessary for all equipment.
however. but Appendix B suggests t:bts JDIIbt not be burdensome).

2. Same 88 (1), except that an additional 8tXteen messages are possible (for a
total of32 two-byte options).

3. The block is four bytes long, the mel lie consJ8ting of the
four ID bits plus two bytes. a total of twenty bits.

4. The block len&th is stx bytes: twenty-etgbt bits (4+3x8) are available. the
remaining byte providing error protection for the last 4-byte set.

5. The block length is six bytes with thirty-six bits of lnfonnatlon (4+4x8)
being available. but without additional error protection.

6. The length of the block 18 unlmown or Irrelevant

In each of the foregoing options. except the first two. the available bits can be
divided in a yet-to-be-determtned way between those indicating the standard
identification number and any additional message. The proposed SMPIE
standard would constrain only options 4 and 5. allocating the first eight bits to
designating the sovereign state. so that d~opmentof these six-byte options
can proceed without international agreement. Designation of standards bodies
and sovereign states is discussed further In SectIon 5.2.4.3.

The ten remaining proposed options for the LT field provide for either one.
two. four. or sJx bytes in the header taU to be allocated to specifying the block
length In bytes, always In Integer format. DependIng on which of these ten
options is chosen. addltlonallnformation is also conveyed concerning the level
of error protection for the header. These proposed options are as follows:

7. One-byte field In the header tail spedftes block length in integer format: no
additional error correction capablllty is provided to the header. Blocks up to
256 bytes long are available under this option.

8. same as (7). except an additional one-byte is provided for header error
protection.

9. Same as (7). except that two bytes spectfy block length: the maximum
block length here Is 64 KB.

10. Same as (9) with an additional byte for header error protection.

11. Same as (7). except that four bytes specify block length. which can
approach four bllllon bytes.

12. Same as (Ill. except that two bytes of header error protection are added.

13. Same as (7). except that six bytes specify block length.

- 8 -

~--

~ 1
!

14. same as (13). except that two bytes ofbeader error protection are added.

15-16. To be detemdned.

5.2.3 Header Key: Four-BIt ID Fteld

When the 4-blt ID field is not being uaed to convey a message usJng LT
options 1-6. then the ftrst three bIta of tbe II> 8IId IDdIcate one of etgbt poaatble
lengths for the header-tail field conveyiDJ the standard ldenUftcation number,
and the fourth ID bit Indicates wbett.' a readable descr1ptor follows the
header'. n.epropoMd eight taIl-1en&'b IekI optIon8lDdude one-, two-. four-.
and eight-byte options. These eight tan-length options proposed for the ID field
are 88 follows:

1. One-byte standard ident1ftcation number allocated internationally.

2. same 88 (U. but provldlng for 256 addltional possible standards.

3. Similar to (1). except that the standanl fWd in the header tail contains two
bytes instead of one, providing for 64.000 international standards.

4. S1mJ1ar to (1). but with a three-byte fteld in the header tail. providing for
over 16 m1l1lon international standards.

5. 1\vo bytes In the header tail1ndfcate the standard identification number,
the first byte indicating the sovereign state (see Section 5.1.2.3).

6. Similar to (5), except that four bytes are available (one for the sovereign
state).

7. SImilar to (5), except that eight bytes are available.

8. To be determined. or reserved for the distant future.

These first four options provide one-, two-, and three-byte standard
idenUftcation numbers to some desJgnated international standards body or
bodies. Two versions of the one-byte option are provided because otherwise too
few combinations would be avaflable. The remaining options provide one byte
(or more) wbleb ldenUftes the sover~ state under whose authority the
remamtng staDdard-1dentUlcaUon-number bytes the ID field have been assigned
(1. 3. or 7 bytes rematn). Note that recetvtn& equipment would generally not
diattnguish between sovereign state id«1t1fters and standard identlftcation
numbers: they would be treated together only as a single merged number that
was known or unknown.

5.2.4 Header TaU

5.2.4.1 Header TaU Organ1zatlon

The header tail contains one field for 1ndicaUng the block length in integer
fonnat, one field for the standard identlftcation number. and optional fields for

- 9-

......--

error protection. all haYing been dJscussed above.

5.2.4.2 Header TaU: Standard-ID Organization

The Standard ID compriseS two parts: the sovereign state identttlcation
number. and the standard identification number. described in sections 5.2.4.3
and 5.2.4.4. respect1Vely.

5.2.4.3 Header Tan: Sovereign State IdentJflcaUon

Eight bits .. suJ'ldent to designate the autbor1zlng sovereign state. even if
the number of SCJ'ft'I"etgn. states e.GCeeda 216; the trick is to subdivide certain
undesJgnated IOftlIetgn state idenUfters bJ' borrowing bits from the rema1nlng
standard identlfter fteld. For example. by deferring to the United Nattons the
task of deflrdng sovere1gnt¥. it should be an easy matter to assign all present
U.N. members untque identlftcaUon numbers in alphabetical order. and to
assign the next numbers in order of membership admission to states not
replacJng member states who are already members. Once 224 member states
exist. new United Nations members would share the last 32 numbers. Within
these 32 sovereten state "condominlWntt ldentUlers. an additional three bits
would be borrowed from the Standard ldentlfter field. permitting eight new
member states per condominium. or 256-32+(32x8) = 480 possible states. Of
these state designators. 32 would be assigned to existing standards bodies. In
the unlikely event more states are created. still more bits can be borrowed,
permitting un1Jmlted growth.

5.2.4.4 Header Tall: Stan(lard Identifier

The Standard Identifter would be selected by the indicated Sovereign State
or International Standards Body using existing procedures. To the extent
standards already have untque IdenUftcaUOn numbers. those same numbers
could be used here. To the extent they do not. each standards body should
map their standards into numbers. preferably a compact or consecutive set.
Most new standards might be introduced under long numbers associated with
minor standards bodies. while standardll ad1levlng wide acceptance could be
renamed with short ones. Since bits can be borrowed from the Standard
Identifier field almo8t indeftnttely. the system would permit in certain cases (the
longer header options) for every indiVidual ever bom to become a sovereign
definer of standards under some state's authority (the eight-byte option
prOvides each soveretgn state with 70 IIIIUion blWon numbers). In the same
way. a standards body could allocate numbera well spaced numerically so that
their least sJFlftcant bits could become "user-allocated bits". functioning in lieu
of. or in addition to. a descriptor.

Note that the cost of this kind of flexibility. as well as the other sorts of
flexib1l1t¥ descrtbed earlier, is essentlally negl1gtble given the extensible nature
of this header architecture. n18t Is. the pI1ce of using long headers is paid
prtndpally by those who need them. whUe most users will prefer and use the
shorter options.

5.2.5 Header Organtzation illustrations

- 10-

, ,

.'
'1bese opUGna am be represented J*tOrIaIly. 'Ibe elxteen-blt compoetUon

of the header key consISts of tbree partS: tile (our bits in the length-type LT
field (I). the four bits in the ID field (i). and the eight core error protectlon bits
(P): these protect only the key. The header key always consists of:

lDlUUpppppppp

Ifwe desfgnate tbJa two-byte key by the 8JIBbol T. and the bytes repraent1ng
the block~ fteId by "L-. the bytee~ the standard ldenUftcaUon
number by "S • and tbe header parity bytea by 'T". then for LT options 1 and 2
we~ only K (two bytes). For LT opttons 3. 4. and 5. we have only KSS (four
bytes). KSSSP (am bytes). and KSSSS ... bJW). respectively. In tbta cae of
eztreme1y abort blocb. the standard JdeDUAcatJon numbers SSS and SSSS.
comb1ned with the 4 blts in the ID fleld. would generally convey =:r in
their own rigbt. and could also be uaed for a variety of transa· and
transport functions. LT option 7 would permlt the foUowtng posstbillt1es: KlS.
KLSS. KLSSS. KlSSSS and KLSSSSSSSS. where the number of bytes allocated
to the Standard Identlflcation number by 5...5 Is spectfted by the three bits in
the ID field (see 5.1.1.3). One Ukely option for HD1V might be LT option 12.
combined with ID option 1. represented .. KlJJJSPP and comprising nine
bytes. The standard number contained in fidd 5 would be an international
standard. Ifsuch an international standard were devised to have block lengths
no huger than 64KB. and if one-bit error correctiOn were adequate. then a six
byte HD1V option 18 avatJable: KUSP. Such short 5 or 6-byte header options
could often be employed for non-video Information. For example. KLSS (5
bytes) would accommodate 64.000 possible international standards employing
data up to 256 bytes per block.

5.2.6 Header Arch1tecture: Equipment Imp1lcations

Equipment interpreting such headen can be particularly simple. SInce it
normally would be reading a stream of blocks. and should mow when a block
begInS. It could simply jump to one of the 641(words specified by the 16-bit
header key. theBe wonIB indicating the location of the bytes speclfylng the block
length. An example of an algorithm to perform these header decoding functions
appears in SecUon 5.2.8. and an Ulustrative program coded in C appears in
Appendix B. SImpler equipment might simply look at the first four bits of the
LT field. from which the same lnfonnatlon can be deduced in an error-free
environment. Equipment of intermediate complexity can use the key error
protection bits to an Intermediate d~. 1be ID bits immediately indicate the
fidd where the Standard Identifier 18 located. and equipment should compare
this to a list of standards it is prepared to process. After any indicated
processing. the equlpment moves directly to the next header at the spedtled
number oCbytes along the data stream.

Should syncbrordzation be lost. it could readily be recovered in most cases
of interest. For example. in the nine-byte HDIV header example above. these
nine bytes would probably never ebange wttbtn a single broadcast program.
HD1V broadcast recdVe:'s would simply scan the data stream for that part1cular
nine-byte sequence. which could be used 88 a traditional synchroniZation block.
nus would work even if multiple header types were being interleaved.

- 11 -

..L--,

"," .. ; I~-"~ ., ,

Acc1dental ayncbnJabaUona (very rard in the data block would be recogniZable
because the Ind1cated false block length would probably not lead to a valid
header.

The most direct use of these header/de&lCl'lptOl'B would be as a series of bytes at
the start of each data block. where the data blocks are then concatenated in a
comma-less string of bits. Other uses could also be made. however. For
exampte. a pertIcuIBr transport scheme (e..&- ova-·the·atr HD1V) mJgbt package
data blocka 1D dI8conUnuous but f)xed c.m Within a larger data stream. this
stream being characterized by the ~ed header/descriptors. A
header/deacrlptor could also cbaractertlle (lay) each frame of an HD1V
sequence. and the lame header/descnpt« teclm1que could also be used within
each frame to COIDIIlUD1Cate detalla about Ita Internal structure. Such nestJng
of header/dacr1ptona does not Impair synchronization much. although an
1n1ttal faJae syncbronizatton could occur Wltbln a larger block: this would be
quickly detected if the presumed block ended WIthout a valid header follOwing
it. The search for a valid header could then resume.

5.2.7 Header Architecture: Transport Functionality

If one wishes to incorporate synchronfzatlon augmentation. extra error
protection. block pl1orltlzation information. or cryptography for the header or
descriptor. it must either be defined at the outset in the header/descriptor
deflnitlons. or ita incorporation becomes atandard-spec1flc--but how could we
know the standard ifwe were not synchronized or error-free. etc.?

For example. in high-error-rate environments users may wish to provide their
header/descriptors with more synchronl2ation information or error protection
than is avallable in the basic deftn1t1ona. Fortunately. much additional
transport-related information can be conveyed effidently through repetition of
short blocks. One simple approach 1a to 1n&ert brief bursts of short 2-byte
headers into the data stream. where the synchronization powers of these 2-byte
header blocks are cumulative: the greater the anticipated channel noise. the
longer these bursts should be. Although the software of some receivers may not
be sopb1sticated enough. to synchronJze such bursts well. this approach is
standard independent. and so such software could be designed today. Such a
burst inserted anywhere In a sequence ofblocks permits synchronization of the
entire stream. Since two-byte headers can correct two bits In 16.
synchroniZation bursts fall only when the bit error-rate continually exceeds
-0.2. In still btgber noise environments where it 1a known such two-byte bursts
might be employed. the receiver can either autocorrelate the signal or correlate
it with potential l6-bit synchronization words; this could provide
synchronJzatlon for nearly any bit error rate. provided the burst length was
suftldently long.

Similar lasues arise when extra error' protection for the header/descriptor
is desired. If the nature of such protection is defined only in a data or
standard-In area. wblch can not be read unless error protection is employed.
the data 18 generally inaccessible. One optlon is for the user to generate. as
above. bursts of short blocks that convey pt1marJly the identity of the desired
error protection scheme employed in the longer data blocks. Such standards

- 12-

.J;

<'
could be deftned ao that they are prea\UIJeCI aperaUve for aD follow:tng data until
"turned oft" by anott. couimancl. Altealllt1'elJ one of the abort b10ckB (say 2
bytes) could be employed to lnd1cate that error proteeUon. cryptography. or
other such scbemee wa-e to be CODVeJed an a "turD-on. tum-or fasblon: a
separate short block could be used to comey theo~message. Such a
repetitious serlee of Ibort blocks can also be weD poted:ed and syncbronJzed In
euenttaUy any reuoaable error envIromIIeDt (BER <0.2) using the exlstlng
deflned header/de8crtptol' options. In tI* cue the user would need to know
only the de8nltIon of the chosen elTOI"-protecUon m number. Such error
protection schemes and protocols can be deftned til sJmple ways over the years.

Yet another sfmtlar problem involves the pouible incorporation of block
priority informatlon. For example. if some data procesatng. transmi8slon.
storage. or dlsplay step can not handle all the data. the orlgtnator of that data
might wish to tell the user which data is more expendable. yet the user might
wish to do onI¥ miDimal decodfn& to d~riOrlty. Although such
Jnformatlon woulcl then be descr1ptor-staDd8rd 8 c. one or more descrtptor
standard lO's could be deftned In such a way as to convey relative block
priOrity. say on a ecaIe from one to ten. ~uch tnrormatlon could also be
tmbedded In the data 1t8eIf. but thfa would~ require the user to do more
decodJng before diIcanIJng any block. Altbouab conCuston could art8e because
multiple prlorlty-JabeItng descriptor scbemeB mJ&bt 8I18e. they would all have
standard numbers which. In principle. could be accessed. Section 5.4
describes another approach, which can be used In parallel.

Although this discussion has not been exhaustive. it does suggest that the
proposed headerIdescrtptor deftnltlon has great flexibility for handlJng a variety
of problems faced when it must supplement or prOVide transport-layer or other
OSI layer functions.

5.2.8 Compact-Header Decoding Algorithm

For simplldty here. we assume the block bas been synchronized and that
the header key baa been error corrected. perhaps by using a 16-bit dispatch
table. We also assume the equipment 18 provided with a lJst of standard ID's
which it knows bow to Interpret. as weD as a much shorter list of 10 length
fields corresponding to these standards (possible values of It. defined below).

1. DiSpatch on the ftrst byte (256 capUons); return with 4 Integers:
I- Jeocth of length JlekI (0+.0-. 1.2.4. or 6 bytes)
J • block Iengtb B bytes If I • 0 (2. 4, or 6 bytes)
K == length of ID fteld In taU (I, 2. 4, 8. or 32 bytes)
L - pnlIeI1Ce ofdescl1ptor (0 or 1)

2. If I == O. 8et block length B - J
3. Ifl == 0-. dJIIpatcl1 rrable 1) on'" bits 5-8 of the header

Interpret resulting meeage and go to 12. or skip directly to 12 if
message unlmown.

4. Ifl =0+. e:u.pateb (fable 2) on bita 5-8 of header.
InterpI'et resulting message and go to 12, or skip directly to 12 if
1DIl8Iage unknown.

5. If I ~ 0, read I bytes (yielding block length B), starting at bit 17 of
header.

- 13-

6.
7.
8.
9.

HIOIleId 1f.rJCtb K not on lJIIt ofJlDcJwn 10 BeId lengths. go to 12.
Read ID 8eId of length Itbytes. starting at btt 17 + 81.
HID ta not on list o1'known IOta. then go to 12.
IfL. 1. read descrtptOl" length D (part oC descrtptor decoding

aJgcdhm. not described here).
10. IfL. O. tben D. O.
11. Go to algorithm speci8.ed by ID and eRCUte OYer a block of B bytes.

starting at the end of the daIcrlptor at I + K + D bytes.
12. Jump to end of block (B bytes long) and read next header.

5.3.1 Introduct1on

PubUc1y readable descrtptors mayor may not be Incorporated In any data block.
as indicated by one of the bits In the header key. They would convey amdJlary
information concerning the nature of the assoc1ated data. such as authorship.
distributorship. ownership. intellectual property restr1ct1ons. sampling patterns.
ftlter1ng employed. color. nonl1nearlt1es. etc. ThIs information would generally
be in the form of ldenWlcatlon numbers assigned by standards bodies. although
options for conveying text. programs. or other data would exist. Uke the
header. desmptors would Indicate their length so that equipment could skip
past ifdesired. and they would have optional provisions for error protection. An
eftlctent ASN.l eqUivalent for the descriptor definition proposed below could
also be developed.

5.3.2 Descriptor Architecture

The descriptor is divided into three parts: a 2-byte "key". a "core" ranging
from 0-8 bytes. and the "tail" of length deftned by the core. The key unlocks the
core. which defines the length of the descriptor. an indication of the nature of
the contents of the desqtptor. and the nature of any optional error protection
for the core. The taU consists of a series of descriptor identification numbers.
similar In concept to the standard Identlftcatlon numbers provided In the
header. For each camera type. non-linear luminance mapping. movie producer.
ftltertng algorithm. royalty payment procedure. etc.• there could be a separate
descriptor number assigned or registered by appropriate standards bodies.
indicated In a manner also stmllar to that of the header. To properly convey
this Ust of descriptor identificatton numbers. the taU also contains fields giving
the number of such descriptor standards. the length and type of each such
standard number. and the nature of any optional error protectton employed.
The taU also supports delivery of ftelds of text In any of a large number of
languages. such as English or Portuguese. 88 well as computer languages such
C. Postscript. etc. Such software elements would penoit the decoding
procedures to be defined explicttly. ifdesired.

A potential area for future improvement ta development ofa more universal
subset of descriptor elements for widespread usage. It would include
parameters such as resolution. raster definition. bit packing. etc.

- 14-

...l--

.~1 ..

5.3.3 DescI1ptor Key Deftn1tion

5.3.3.1 Descrlptor Key Archltecture

1he descriptor key cons18ts of three parta: 1) a 4-btt "type" fldd wblch
cbaract.erllles the contents of the deIcrlptor. 2) a 4-blt "length type" fleld whJch
indlcates the format of the descrtptor length field. and 3) an 8-btt "proteeUon"
fle1d for the key. .

5.3.3.2 De8cr1ptor Key: 4-81t "Type" T Field

The puI'pO.e of the T fleld 18 to lndIcate: 1) whether or not this deacr:tptor
contains a public Jnds (l btt). 2) wbetber the de8crtptor length fteld In the core
(If any) is 2 or 4 bytes long In Integer format (l btt). and 3) whlch of four error
protection options are being employed (2 bits). The four descrlptor error
protection optlona are: 1) no protection. 2) protected core plus unprotected taU.
3) both core and taU protected. and 4) both core and tail doubly protected.

5.3.3.3 Descriptor Key: 4-Blt ''Length-Type" DLT Field

This fteld contatns the length of the descriptor after the core. in bytes.
unless its contents are "zero. zero. zero. zero" (for descrtptor taUs longer than 16
bytes). in which case the length is given by the core in a field which is either 2
or 4 bytes long. as speclfled in the T field (see 5.3.3.2).

5.2.3.4 Descriptor Key: 8-Bit "Protection" P Field

The function of the P field is identical to that of the 8-blt error-protection
field of the header key; it protects the 2-byte descrtptor key only.

5.3.4 Descriptor Core Definition

5.3.4.1 Descriptor Core Architecture

The descrtptor core consists of three parts: 1) a field defining the
descriptor length (0-4 bytes). 2) a fleld tndlcatlng the nature of the contents of
the descriptor (0 or 2 bytes). and 3) an optional protection field for the core only
(0. 1. or 2 bytes). The totallengtb of the descl1ptor core thus ranges between 0
and 8 bytes.

5.3.4.2 Descriptor Length Field

This 8eld 18 of length zero if the deKl'1ptor length specification has been
preempted by the length field in the dellCl'lptor key; otherwise it is either 2 or 4
bytes long in integer format. as determined by one of the btts in the T field of
the descriptor key (lee 5.3.3.2). The length ot the descrtptor field as presented
in the core Ja deftned as including aD the bytes in the descriptor. including
those in the key. core. and tan.

5.3.4.3 Descriptor Core Contents Index

This field contains either 0 or 2 bytes. as indicated by one of the bits in the

- 15-

....1--

,

~H~;!lflli~
::.

descrtptor key T tleld (see 5.3.3.2). In ita 2-byt.e form It lnc:11cates whether or not
the following deacrtptor contains tnformaUon concernfng any of sJxteen
categories of information about the data stream. Among others. these
categories of information include 8)'DCbrontzation re1nforcement. error
proted:1on data. mcrypt10n keys. packet prtorUIes. authorsblp. dtstrlbutorship.
ume or date of..ewm. ownerabl.p.~ property restrfcUons. sampling
patterns. fllterlng btatory. color. nonlinear mapptngl employed. etc. The last btt
of the index 18 zero if tb1s descrtptor Is the same as the prevtous one associated
with the same header ID. The purpose of this contents index is to spare
equipment the bw"den of decodlng deacrlptars when their contents may be of no
1nterest. 1bJa 18 part:Icu1arly so when a lone sequence of descrtptor elements 18
repeated perIOd1caI1y to aid certain U8eI'II ba~ only segments of the data
stream avatJa1)le to them. Users of longer segments could therefore Ignore such
data more readily.

5.3.4.4 Descriptor Core Parity Protection

ThIs field would contaJn O. 1. or 2 bytes. as indicated by two of the bits in
the descriptor key T field (see 5.3.3.2). These bytes would protect the core only.
using codes sim1lar to those employed in the header.

5.3.5 Descriptor Tail Defln1tion

5.3.5.1 Descriptor Tail Architecture

The descrtptor tail consists of four fields:

1) the element-number field. which indicates the number of independent
descriptor identification numbers contained in this desCriptor: its length
ranges from 4 bits to a maximum of 2 bytes;

2) the descrtptor element length-type field. which spec1ftes the lengths of each
of the descriptor Identification numbers contained in the following field.
together with their respective types: these types include idenUfication
number types similar to those employed for indicating standard numbers
in the header. as well as supporting transmittance of text and computer
programs: its length is typically 2-4 bits per descriptor identification
number,

3) the descrtptor identification number field. which consiSts typically of one
or more descriptor standard numbers. each in a 1-6 byte format or
appearing as a sequence of text or code: the total length of this field
approximates several bytes per descriptor element. or substantlally more If
text or code 18 incorporated: and

4) the protecUon fleld. as defined Jointly by the protecUon option indicated in
two of the T bits (see 5.3.3.2) in the descriptor key combined with the
indicated descriptor length; longer descriptor lengths would require more
bytes of protection for any indicated level of protection.

5.3.5.2 Descrtptor Tail Element-Number Field

- 16-

~--

1

This field co.... of one. two. three. or four 4-bit words indicating the
number of deacrlptor elements contalnecl Wlthtn this descriptor. Each 4-blt
word contains S blm 1DdJcatln& the rnaftlber of deP1ents. and 1 btt indicating
whether or not an acJdWonal 4-flU ward II QPlDded. up to a maximum of four
words totaL Thus one 4-blt word WIll .\dICe for 0-7 descriptor types. which
normaUy should be aufBc1ent. Two concatemted 4-bIt words offer up to 2 exp 6
== 64 ptl88dJIe eJaaeata. 1bree warda can aa:ommodate up to 512 elements.
while use of aD four ... (2 bytea) can aee:mnmcvJate more 8.000 elements.
wbfch should be R.fDcIent and J8 the maximum number per header allowed
under thJa protocol.

5.3.5.3 De8crIptor Tail Element Length-Type Fle1d

This fteld consists of a series of eztenaIble 2-btt words. one sequence of
such words applying to each descriptor' eleI1lent. In most cases a atngle 2-blt
word would sUftlCe: the options here are that a 1-.2-. or 3-byte field Is reserved
for the associated descriptor Identlftcatlon number: the fourth option is that two
2-blt words are being employed. If the second 2-blt word Is employed. the
associated optioaa are that 4. 5. or 6 bytes are being employed to lndtcate the
associated cleacdptcu'identlflcaUon number: tbfs accommodates up to 10 exp
12 possible ldenUfleation numbers. wbtch should be adequate. The fourth
option available for the second 2-bU word indicates that an additional 4-blt
word Is to be tntapreted. 1bJs 4-blt word offers 16 additional options. the first
of which Ja that following the 4-bit word. a I-byte word spectfles the length of
the descriptor tdenUftcation field.

The rema1n1ng 15 options are of s1m1lar fonn. but indicate that types of
descriptor data are being employed other than the standard identification
number type. For example. type 2 would 1nd1cate that ASCD text was being
employed in a language indicated by the Brat character of the text stream: thus
256 possible languages can be used. Types 3-16 would indicate which of
several possible computer languages or image description fonnats were being
employed. such .. C. Postscript. etc. If it is felt that the 15 possible languages
available under the 4-blt extension opUon in the element length-type field Is
inadequate. then additional 4-bit fields could be appended by using an
extension bit. Ol" by using 1 bit in each 4-btt fleld to Indicate adclttional 4-blt
fields are appended and can be interpreted .. were the series of descriptor tail
element-number 4-bIt words. (Alternatlwly. the 4-bit word could be reduced to
1 or 2. with the underatancltng that the language is spectfted by the first
following 2 bytea.) DeJlnition of these options is left to the next step in the
SMP1E standards deftnltlon process.

5.3.5.4 Descriptor TaU Standard IdentlfJcation Numbers

If one or two 2-btt words have been previously employed to indicate the
length of the deacriptor ldentiftcation number. then 1-256 bytes may be
employed for the ID number itself. The formats for each of these options are
indicated below.

1 byte International standard established by single
designated authority

- 17-

2 bytes

3-256 bytes

16-btt standard number designated by authorized
international standards body (bodies)

1 byte ind1caUng the80~ state. and the
remaJnder (2-256 bytes) being avaJlable for the
standards number

The sovereign state and standards numbers would be designated using
procedures s1milar to that spedfled in the header. Note that the longer
standards numbeI's perm1t subdeatgnations tmder the sovereign state tnd1cator
for substdlary standards bodies. Including indlvldual corporations. Institutions.
and even individuals. The longer fields also permtt use of user-defined bits
whtch can be aSSigned at execution. thus pnwtdtng a data field. Such data
fields could be used for conveying dynamically changlng information such as
average luminance. audio gain. etc.

5.3.6 Descriptor TaU Error Protection

1bJs tleld could be concentrated at the end of the descriptor or distributed
throughout to Simpltfy processing. The number of bytes and protocol employed
for thts purpose would be determined untquely by the 2 bits in the descriptor
key T field and the descriptor length. as specified in the descriptor core
descriptor length field or in the descriptor key length field. Definition of these
protection strategtes might parallel those employed in the header and remain to
be defined more fully.

M Transport Hea<ier/Pescr1ptors

5.4.1 Motivation and Objectives

Section 5.2.7 discusses several reasons why providing error protection.
synchronization reinforcement. packet priOrity. and higher level encryption to
header/descriptors could pose problems for interpretive hardware if the data is
excessively noisy. Although the solutions suggested there will accommodate
most error envtronments. sOO more serious situations can be handled using a
transport headerI descriptor block such as described here. Such a transport
block has the additional advantage that if lnsumc1ently protected data is
moving into a more hostile transport environment. additional protection can be
incorporated in the transport block without having to redefine the input blocks.
Similarly. such transport blocks can be reIDOYed without penalty when moving
into more error-free or otherwise benign environments.

The objective here Is to suggest how the architecture of such transport
blocks are consistent with the header/descriptor deftn1tions presented above.
but not to deftne all the detatls. Thus establlllhment of the headerIdesCriptor
standard can proceed without waiting for all details of the transport block to be
resolved. It would be useful to resolve such detalls. however. before users of the
standard adopt Inferior methods ofaddressing the same transport problems.

The principal motivation for defining transport blocks is to avoid

- 18-

~--

proUferation of standar d-sped1lc altemattves for addressing such transport
problems. Such proUfena.tlon could mcr..e the cost of decoding equipment
which would have to accommodate all these posslbtUtles. In a high-error
environment. executing the multiple search strategies necessary when
synchromzatlon fa loet or heavy ernn eJdat. could become problbtttve. For this
reason it .. Jmpal1ant to have only a few atandard opt1ona for certa1n aspects of
the traDaport block. DeftnlDg -.n edldent amaIl set fa beyond the scope of the
present eI'ort. and would take COD8iderab1e atucIy. 'lben6re It 18 reasonable to
uaume that tbta study would be~ after any 1DItIa1 header/descrlptor
standard 18 speeded. One tD.ustrattve CandIdate for such a set appears here in
Appendjx A:. it 18 intended only to inltta.te dfscuaaton of these iSSues.

5.4.2 Archftecture ofTnmsport Blocks

Transport header/descriptor blocks would constst of a single
header/descrlptol'. where the header would specify an tntemattonal standard ID
1ndlcaUng wbIch type of transport block involved: only a few such types
would ever be dellned. The descrtptor of the transport block would corm:y up
to eight dJfferent elements:

1) Descriptor Table of Contents (standard fonnat defined earlier).

2) Synchronization reinforcement bits. not error protected.

3) Error protection bits for the transport header and its attached following
header/descrtptor.

4) Enayptlon key for deciphering the descriptor. If any. in the following
block.

5) Block prtoIity; determined by data orf&1nator. indlcating relative priority of
the following block concerning interpretation or transmission in cases
where Inadequate capadty is avallable. Authorization keys may also be
needed to verify priority In certain cases. Price bidding could be supported
here too.

6) Authorizations and fee mechanIsms for alteration or use of data.

7) mock sequence numbering and ttmtng-reconstructlon information.

8) Padding to yield one of the very few al10Mld lengths for the transport block
correspond1ng to the international header standard ID.

In addition to these elements there would also be the traditional field in the
descriptor deftnJng its length. although interpretation of this length would be
unnecessary because the transport block length 18 specified by the header. and
there is no data payload follOWing the descrlptor.

The six main descriptor elements would convey information using
traditional descr1ptor standard numbers. where long numbers accommodating
an adequate number of user bits could be employed. Deflning these descriptor
standard numbers Is the task whtch can and probably must be postponed until
the technical tradeotrs aSSOCiated with dtfferent choices are better understood.

- 19-

"

Thus standarda Cor headers and c:IescrIptora can and should be adopted in
advance of these deecr1ptor deftnltlons tor transport blocks.

5.4.3 DecodJng l88ues tor"n'ansport Headers

Decoc:Unc audl a transport header In a bfab-error enVIronment would be
relatively atrlls,btlorward.Flrat. If sy.radironJzatlon had been lost.
synchronlzatlon would. be estab~. JnlUa1" tb1s might be done assuming a
low-error environDlalt. If the~ fa ...,.. then each oC a Cew possible
synchronization blocka wol,lld be 8OUl\bt. IDC'lIId1nI periodic repetition of legal
header keys. assuming that key bursts mtgbt have been employed for this
purpose. Because aU possible syn.chroDbatlon words mJght be sought. it is
important to have only a few legal ones If they are many bytes long. Because
the synch relnt'orcement bits could be only in a small number of positions
relative to the betlnnJng of the transport block. each such position could be
tested for consistency with the assoctated. error protection bits. which are also
located in a small number of poutble locations. Contlrmatlon of
synchrOniZation follows if legal headers come 1mmedfately after the indicated
end of any block. Once the transport block Is synchronized and error COITeCted.
the remaJnlDg deac11ptor fields conta1n1nC any enayptlon key for the descriptor
in the followtng block. or any packet priOrity lntormatlon can be dec1phered.

One principal new constraint should be imposed by the standard on
manufacturers of equipment bandllng this header/descriptor standard. If
transport blocks are to be useful. such equipment must never insert data
between a transport block and the following block to which it applies.
Transport systems should try not to scramble the sequence of data blocks in
any event. but if a transport block should aCCidentally be prepended to the
wrong data block. the packet priority. encryption key for the data block
descriptor. and the error protection for the header/descriptor could be
inappropriate. reaultsng In a scrambUng of the interpreted header/descriptor.
Such scramb11DC would also typtcaJly cause local loss of synchronization.
part1cuJarly m bIgb-error environments. Since transport blocks would nonnally
be quite brief compared to typical data blocks. such a constraint should not be
dtfBcult to satisfY. Such transport blocks could also be added or subtracted at
will by a gtven transport layer. however. provided they are appropriate to the
blocks which they precede.

If a data stream is entered In the middle of a transport block. then
confusion might result. To protect against this un1tkely possibility. equipment
might choose to walt until the second valld header Is intercepted before
commencing decoding.

6. ABSTRACT 8'I'NTAX NOTA-DOlI I (MIK.I)
BEADItR/DB8CRIPTOR ARCBlIECTVlCB

Abstract Syntax Notation I (ASN.I) is an existing Iso/ccrrr standard tn"--/'
common use within the computer and telecommunications industries. Within

- 20-

the ASN.l framework. It Is straJgbtforward to deftne a SMPI'E header/descriptor
that meets the objecUYes descrJbed in SectIons 1-5 above. and It would leverage
exl8tlng tools. expel ti8e. and admln1stratlve structW"es.

ASH.1 Is derlftd fnm earlier work atxa- PARe on Courier (late 1970.). An
early va'8IoD of tile notatkll1 (c. 1984) ... UMd .. the Brat draft of the CCnT
X.400 IIeI1es ofreca.~on IDeISS. bandllng syatem8 (i.e•• electronic
mall). ISO and ccrrr then jointly developed ASN.l for use within the OSI
presentaUon layer (c. 1988).

ASH.l Is now widely used in a range ollltaDdarda act1v1ties. including the
CCnT X.500 directory service and both the 081 and Internet network
management systems. Over the years. a collecUon of software tools and utfllties
to support ASN.I has been (and Is being) developed.

ASN.l Is an extensible notation for deacr1bfng data that is to be exclJanged by
transmlsslon or storage. It Is much like a pntII'1lIIUD1ng language. sucb as C
and Pascal. 1b.ere are several simple types. such as Integer. real. and octet
string (t.e.• byte string). and constructor types that can be used to build
arbitrarily complex data structures. including hierarchlcal representations (e.g..
packet within packet).

An ASH.! header can be thought ofas an enw:Iope that contains. for example. a
single video frame. ASN.l supports the notion of embedding. which allows one
or more data structures to be contained within another. 1b.us. a sequence of
frames can be embedded within an outer header (or envelope) that labels a
program segment. 'IbIs can be taken to coarseI' granularity. e.g.. shots. scenes.
programs. etc. Similarly. it can be taken to finer granularity to embed audio
tracks. closed captioning. descriptors. etc. within indlvldual frames.

A key feature in ASN.l Is the separation of how the data is described (Abstract
Syntax) and how data Is encoded (Basic Encoding Rules. "BER"). Data
structures are descrf.bed in a human-readable syntax and automatically
translated into the bits and bytes for transfer. When a new data structure (or
type) Is defined. its representation Is automatically generated. Furthermore.
deployed ASH.! compliant systems will be able to interpret new structures
without hardware modiftcation.

The followtng summary description of ASN.l presents only enough detail to
motivate its U8e for the speclflc need8 of a header/descriptor. For formal
deftnlUon of ASH. I refer to ISO 8824/8825 aDd/or CCITT X208/209. A more
accessible description can be found in: Maraha11 T. Rose. The Open Book: A
Practical Perspective on OSI. Prentice Hall. 1990.

§.2 Basic Eneo<tJna Rules fBER>

All ASN.l types. whether a simple type or a structured type. can be encoded
using the same basic format of three fields:

- 21 -

"'

'. >"'~'•.""~'".. '""

[tag J [length J [value)

The three fields togetber·make up a data It8IL Each lleld .. variable In size to
accommodate arbItrarlly complex substruc:tures and encod1ngs. A simple type.
such as an tnteflel'. requires only a few bytIlII. A atructured type. such as a long
byte stJ1ng. can be megabytes. gtgIIbytea. or larger as neeeuary to contain the
payload data value. The basic format is Inherently self identtfytng and
extensible.

A data stream is a sequence of items each of which can be structured or nested.
Thereby. one can deftne arbitrarily structured data for both header and
descriptor. including nested packet-withln-packet structures.

-Tag Field·. The tag field specifles the type of the item value. Several simple
and structured types (integers. character strings. etc.) are universally defined in
the ASN.1 standard. and are recognized in all compliant environments. Also,
one can define types that exist within the spec.tftc environment of an application
or communications context. A tag is principally encoded as a Single byte. but
can be extended. In the BER. the tag is encoded as:

<2> <1> <5> -- bits per field
(class I P I tag number I

The tag field allows a receiver to "parse" the incoming data stream, selecting
those components/types in which it is interested and bypassing others.

The EXIERNAL type is of particular sIgnlftcance. In essence. it is a universal
header for the data that it encapsulates. The EXTERNAL type is described
further below. Other types are relevant to use in a descriptor.

•Length Field·. The length field indicates the size of the value. It is an integer
of one or more bytes that spedfles the number of bytes in the value fteld. In the
BER. the short form of length is encoded as a single byte. and can indicate
lengths of 0.. 126 bytes of value. In extended form. the first byte spectfles the
number ofbytes of length. Length is encoded as:

short form : 1 byte : [Obbbbbbb) : lengths of 0.. 126 bytes

extended form: n bytes: [lnnnnnnn) [bbbbbbbb) [bbbbbbbb J•••n

Only the number of bytes needed to specUy length are used. Thus. the length
field is compact. The extensibility of the length field permits a maximum length
field that is 126 bytes to specify a length of _2"" 1008 or -10""303.

Note that a common length specification is used regardless of the associated
data item. Accordingly, there is no need to invent custom length encoding
schemes for each new data item.

*Value Field·. The value field is the value in the type spedfled by the tag. It is

- 22-

